In vitro and in vivo effects of polyethylene glycol (PEG)-modified lipid in DOTAP/cholesterol-mediated gene transfection

نویسندگان

  • Torben Gjetting
  • Nicolai Skovbjerg Arildsen
  • Camilla Laulund Christensen
  • Thomas Tuxen Poulsen
  • Jack A Roth
  • Vagn Neerup Handlos
  • Hans Skovgaard Poulsen
چکیده

BACKGROUND DOTAP/cholesterol-based lipoplexes are successfully used for delivery of plasmid DNA in vivo especially to the lungs, although low systemic stability and circulation have been reported. To achieve the aim of discovering the best method for systemic delivery of DNA to disseminated tumors we evaluated the potential of formulating DOTAP/cholesterol lipoplexes with a polyethylene glycol (PEG)-modified lipid, giving the benefit of the shielding and stabilizing properties of PEG in the bloodstream. METHOD A direct comparison of properties in vitro and in vivo of 4 different DOTAP/cholesterol-based lipoplexes containing 0%, 2%, 4%, and 10% PEG was performed using reporter gene activity and radioactive tracer lipid markers to monitor biodistribution. RESULTS We found that 10% PEGylation of lipoplexes caused reduced retention in lung and heart tissues of nude mice compared to nonPEGylated lipoplexes, however no significant delivery to xenograft flank tumors was observed. Although PEGylated and nonPEGylated lipoplexes were delivered to cells the ability to mediate successful transfection is hampered upon PEGylation, presumably due to a changed uptake mechanism and intracellular processing. CONCLUSION The eminent in vivo transfection potency of DOTAP/cholesterol-based lipoplexes is well established for expression in lung tumors, but it is unsuitable for expression in non first pass organs such as xenograft flank tumors in mice even after addition of a PEG-lipid in the formulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient short interference RNA delivery to tumor cells using a combination of octaarginine, GALA and tumor-specific, cleavable polyethylene glycol system.

We recently developed a multifunctional envelope-type nano device (MEND) for efficient nucleic acid delivery. Here, we report on the development of an octaarigine (R8)-modified MEND encapsulating small interfering RNA (siRNA) with a tumor-specific, cleavable, polyethylene glycol (PEG)-lipid (PPD). We first determined the optimal concentration of R8 and pH-sensitive fusogenic peptide (GALA) on t...

متن کامل

Transferrin-PEG-PE modified dexamethasone conjugated cationic lipid carrier mediated gene delivery system for tumor-targeted transfection

BACKGROUND The main barriers to non-viral gene delivery include cellular and nuclear membranes. As such, the aim of this study was to develop a type of vector that can target cells through receptor-mediated pathways and by using nuclear localization signal (NLS) to increase the nuclear uptake of genetic materials. METHODS A dexamethasone (Dexa)-conjugated lipid was synthesized as the material...

متن کامل

Mannosylated liposomes for targeted gene delivery

BACKGROUND Liposomes can be modified with different ligands to control their biological properties, such as longevity, targeting ability, and intracellular penetration, in a desired fashion. The aim of this study was to modify liposomes with a novel mannosylated polyethylene glycol-phosphatidylethanolamine (M-PEG-PE) ligand to achieve active targeted gene delivery. METHODS Rat Kupffer cells w...

متن کامل

Cytofectin Amine Head Group Modification and Degree of Liposome Pegylation: Factors Influencing Gene Transfer

The effectiveness of liposome-mediated gene transfer methods hinges, in part, on the nature of the interaction between the DNA cargo and the liposomes. Here we have examined the effect of quaternization of the cytofectin cationic head group on this interaction and the effect of concentration of the biocompatible, protective polymer polyethylene glycol(2000) (PEG(2000)) on transfection activity....

متن کامل

Stabilized plasmid-lipid particles: factors influencing plasmid entrapment and transfection properties.

Previous work has shown that plasmid DNA can be encapsulated in small 'stabilized plasmid-lipid particles' (SPLP) composed of 1, 2-dioleyl-3-phosphatidylethanolamine (DOPE), the cationic lipid N, N-dioleyl-N,N-dimethylammonium chloride (DODAC) and poly(ethylene glycol) (PEG) conjugated ceramides (PEG-Cer), employing a detergent dialysis procedure. These SPLP have potential as vectors for in viv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010